Black Hole Evaporation Entails an Objective Passage of Time
نویسندگان
چکیده
Time’s apparent passage has long been debated by philosophers, with no decisive argument for or against its objective existence. In this paper we show that introducing the issue of determinism gives the debate a new, empirical twist. We prove that any theory that states that the basic laws of physics are time-symmetric must be strictly deterministic. It is only determinism that enables time reversal, whether theoretical or experimental, of anyentropyincreasing process. A contradiction therefore arises between Hawking’s [1] argument that physical law is time-symmetric and his controversial claim [2] that black-hole evaporation introduces a fundamental unpredictability into the physical world. The latter claim forcibly entails an intrinsic time-arrow independent of boundary conditions. A simulation of a simple system under time reversal shows how an intrinsic time arrow re-emerges, destroying the time reversal, when even the slightest failure of determinism occurs. This proof is then extended to the classical behavior of black holes. We conclude with pointing out the affinity between time’s arrow and its apparent passage.
منابع مشابه
Braneworld Black Holes in Cosmology and Astrophysics
The braneworld description of our universe entails a large extra dimension and a fundamental scale of gravity that might be lower by several orders of magnitude compared to the Planck scale. An interesting consequence of the braneworld scenario is in the nature of spherically symmetric vacuum solutions to the brane gravitational field equations which could represent black holes with properties ...
متن کاملar X iv : g r - qc / 0 70 10 30 v 1 4 Ja n 20 07 Black hole evaporation in a heat bath as a nonequilibrium process and its final fate
We consider a black hole in a heat bath, and the whole system which consists of the black hole and the heat bath is isolated from outside environments. When the black hole evaporates, the Hawking radiation causes an energy flow from the black hole to the heat bath. Therefore, since no energy flow arises in an equilibrium state, thermodynamic state of the whole system is not in an equilibrium. T...
متن کاملBlack Hole Evaporation and Higher-Derivative Gravity I
We examine the role which higher-derivative gravity interactions may play in black hole evaporation. The thermodynamic properties of black holes in Lovelock gravity are described. In certain cases, the specific heat of a black hole becomes positive at a small mass. This results in an infinite lifetime for the black hole (and also allows it to achieve stable equilibrium with a thermal environmen...
متن کاملar X iv : 0 71 1 . 23 30 v 1 [ gr - q c ] 1 5 N ov 2 00 7 Black Hole Evaporation and Genralized 2 nd Law
In general, when a black hole evaporates, there arises a net energy flow from black hole into its outside environment due to Hawking radiation and energy accretion onto black hole. The existence of energy flow means that the thermodynamic state of the whole system, which consists of a black hole and its environment, is in a nonequilibrium state. To know the detail of evaporation process, the no...
متن کاملTAUP-2298-95 hep-th/9510212 Black Hole Information vs. Locality
We discuss the limitations on space time measurement in the Schwarzchild metric. We find that near the horizon the limitations on space time measurement are of the order of the black hole radius. We suggest that it indicates that a large mass black hole cannot be described by means of local field theory even at macroscopic distances and that any attempt to describe black hole formation and evap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000